Bất đẳng thức là gì? Các công bố khoa học về Bất đẳng thức

Bất đẳng thức là một quan hệ so sánh giữa hai giá trị hoặc biểu thức không bằng nhau. Nó cho biết một giá trị lớn hơn, nhỏ hơn hoặc không bằng với giá trị hoặc ...

Bất đẳng thức là một quan hệ so sánh giữa hai giá trị hoặc biểu thức không bằng nhau. Nó cho biết một giá trị lớn hơn, nhỏ hơn hoặc không bằng với giá trị hoặc biểu thức khác. Bất đẳng thức thường được ký hiệu bằng các ký hiệu như "<" (nhỏ hơn), ">" (lớn hơn), "≤" (nhỏ hơn hoặc bằng), "≥" (lớn hơn hoặc bằng). Ví dụ: 3 < 5, x ≤ 10, a + b > c - d.
Bất đẳng thức định nghĩa một mối quan hệ so sánh giữa hai giá trị hoặc biểu thức không bằng nhau. Nó cho phép chúng ta xác định mối quan hệ về lớn hơn, nhỏ hơn hoặc bằng với các giá trị hoặc biểu thức khác nhau.

Có hai loại chính của bất đẳng thức là bất đẳng thức đơn và bất đẳng thức đa biến.

1. Bất đẳng thức đơn: Đây là một loại bất đẳng thức mà chỉ có một biến duy nhất. Ví dụ: x > 3, y ≤ 10, z ≠ 5. Trong các bất đẳng thức đơn, giá trị của biến được so sánh với một hằng số cụ thể hoặc một biểu thức khác.

2. Bất đẳng thức đa biến: Đây là một loại bất đẳng thức có nhiều hơn một biến. Ví dụ: 2x + 3y > 10, x^2 + y^2 ≤ 25, a + b + c ≥ 0. Trong các bất đẳng thức đa biến, chúng ta cần xác định không chỉ mối quan hệ giữa các biến riêng lẻ, mà còn mối quan hệ giữa các biểu thức chứa các biến này.

Để giải các bất đẳng thức, chúng ta thường thực hiện các phép tính và các quy tắc tương tự như trong các phương trình. Tuy nhiên, có một số quy tắc cần lưu ý khi làm việc với các bất đẳng thức, bao gồm:

- Khi nhân hoặc chia một bất đẳng thức cho một số âm, hướng của dấu thay đổi. Ví dụ: nếu -2x > 5, khi nhân cả hai vế với -1, chúng ta phải đảo ngược dấu và kết quả là 2x < -5.
- Khi cộng hoặc trừ một bất đẳng thức với một số âm, hướng của dấu giữ nguyên. Ví dụ: nếu 2x > 5, khi trừ cả hai vế cho -3, chúng ta vẫn có 2x > 5.
- Khi nhân hoặc chia cả hai vế của một bất đẳng thức với cùng một số dương, hướng của dấu giữ nguyên. Ví dụ: nếu x > 3, khi nhân cả hai vế cho 2, chúng ta vẫn có x > 6.

Tuy nhiên, khi nhân hoặc chia cả hai vế của một bất đẳng thức với cùng một số âm, chúng ta cần đảo ngược hướng của dấu. Ví dụ: nếu x < 4, khi nhân cả hai vế cho -2, chúng ta cần đảo ngược dấu và kết quả là -2x > 8.

Các quy tắc và kỹ thuật giải các bất đẳng thức đa dạng và phức tạp thường được học trong khóa học toán học và được áp dụng trong nhiều lĩnh vực như kinh tế, khoa học và kỹ thuật.

Các bài báo, nghiên cứu, công bố khoa học về chủ đề bất đẳng thức:

Sai số bình phương trung bình (RMSE) hay sai số tuyệt đối trung bình (MAE)? - Lập luận chống lại việc tránh sử dụng RMSE trong tài liệu Dịch bởi AI
Geoscientific Model Development - Tập 7 Số 3 - Trang 1247-1250
Tóm tắt. Cả sai số bình phương trung bình (RMSE) và sai số tuyệt đối trung bình (MAE) đều thường được sử dụng trong các nghiên cứu đánh giá mô hình. Willmott và Matsuura (2005) đã đề xuất rằng RMSE không phải là một chỉ số tốt về hiệu suất trung bình của mô hình và có thể là một chỉ báo gây hiểu lầm về sai số trung bình, do đó MAE sẽ là một chỉ số tốt hơn cho mục đích đó. Mặc dù một số lo ...... hiện toàn bộ
#Sai số bình phương trung bình #sai số tuyệt đối trung bình #đánh giá mô hình #phân phối Gaussian #thống kê dựa trên tổng bình phương #bất đẳng thức tam giác #hiệu suất mô hình.
Về Một Số Bất Đẳng Thức Tích Phân Mới Cho Hàm Số Trong Một Và Hai Biến Dịch bởi AI
Springer Science and Business Media LLC - Tập 21 - Trang 423-434 - 2005
Trong bài báo này, chúng tôi xem xét một giới hạn cho phiên bản tổng quát của các bất đẳng thức tích phân cho các hàm số, đồng thời nghiên cứu hành vi chất lượng của các nghiệm của một số lớp phương trình vi phân muộn hyperbol dưới các bất đẳng thức tích phân.
#bất đẳng thức tích phân #phương trình vi phân #nghiệm #hàm số #vi phân muộn
Bậc đỉnh của Cây Steiner Tối thiểu trong không gian ℓ p d và các không gian Minkowski trơn khác Dịch bởi AI
Discrete & Computational Geometry - Tập 21 - Trang 437-447 - 1999
Chúng tôi tìm ra các giới hạn trên cho bậc của các đỉnh và các điểm Steiner trong Cây Steiner Tối thiểu (SMTs) trong không gian Banach d -chiều $ \ell$ p d độc lập với d. Điều này tương phản với Cây Khung Tối thiểu, trong đó bậc tối đa của các đỉnh tăng trưởng theo hàm mũ theo d [19]. Cá...... hiện toàn bộ
#Cây Steiner Tối thiểu #Bậc đỉnh #Không gian Banach #Không gian Minkowski #Bất đẳng thức
Generalizations of young-type inequalities via quadratic interpolation
In this paper, we give some new improvements of the famous works of F. Kittaneh, Y. Manasrah about Young's inequalities published on the J. Math. Anal. Appl. (2010) and Linear Multilinear Algebra (2011) via the theory of quadratic interpolations. As applications, we also establish corresponding inequalities for matrix and operator versions.
#Bất đẳng thức Young #Tính lồi #Toán tử dương #Ma trận xác định dương #Young inequality #Convexity #Positive operator #Positive definite Matrix
Về định lý giới hạn trung tâm theo trung bình đối với dãy hiệu martingale
Trong lớp các định lý giới hạn của lý thuyết xác suất thì Định lý giới hạn trung tâm đóng vai trò rất quan trọng trong việc nghiên cứu các bài toán thống kê và các ứng dụng. Tuy nhiên bài toán thống kê nói chung không cho phép chúng ta nhiên cứu với kích thước mẫu lớn vô hạn, chính vì vậy bài toán “xấp xỉ phân phối chuẩn” sẽ cho phép chúng ta ước lượng được kích thước mẫu cần thiết để chúng ta có ...... hiện toàn bộ
#xấp xỉ phân phối chuẩn #biến ngẫu nhiên #hiệu martingale #bất đẳng thức Berry-Esssen #định lí giới hạn trung tâm
Phát triển tài chính và bất bình đẳng thu nhập - bằng chứng thực nghiệm tại Đông Nam Á
Khi bất bình đẳng thu nhập làm suy giảm sự gắn kết và niềm tin xã hội, thì một điều quan trọng cần xem xét là trong các nền kinh tế đang phát triển như khu vực Đông Nam Á, phát triển tài chính sẽ làm giảm hay làm trầm trọng thêm tình trạng bất bình đẳng thông qua huy động và phân bổ tiết kiệm vào đầu tư sản xuất. Bài viết sử dụng kỹ thuật ước lượng GMM cho dữ liệu bảng từ 8 quốc gia trong giai đoạ...... hiện toàn bộ
#Bất bình đẳng #phát triển tài chính #GMM
TÍNH CHÍNH QUY CỦA NGHIỆM YẾU CHO PHƯƠNG TRÌNH NAVIER – STOKES LIÊN QUAN ĐẾN GRADIENT CỦA THÀNH PHẦN VECTƠ VẬN TỐC
TNU Journal of Science and Technology - Tập 169 Số 09 - Trang 239-243 - 2017
Trong bài báo này, chúng ta xét phương trình Navier – Stokes trong toàn bộ không gian . Bằng việc chứng minh bổ đề liên quan đến bất đẳng thức Sobolev, chúng tôi cải tiến kết quả tính chính quy cho nghiệm yếu của phương trình Navier – Stokes liên quan đến thành phần của vectơ vận tốc.
#phương trình Navier – Stokes #tính chính quy #nghiệm yếu #bất đẳng thức năng lượng #toàn bộ không gian .
Dạng lũy thừa thực của một số bất đẳng thức kiểu Young
Trong bài báo này, chúng tôi mở rộng các kết quả về bất đẳng thức kiểu Young được đưa ra bởi Daeshik Choi (Math. Inequal. Appl. 21 (2018), no. 1, 99–106.) tới lũy thừa thực. Chúng tôi cũng đưa ra một số ứng dụng của các kết quả này vào lí thuyết ma trận.
#Bất đẳng thức Young #Định thức #Ma trận xác định dương #Young inequality #Determinant #positive definite matrix
Tính ổn định của ánh xạ nghiệm cho bài toán tựa cân bằng véctơ mạnh phụ thuộc tham số và ứng dụng
Trong bài báo này, đầu tiên chúng tôi nhắc lại bài toán tựa cân bằng véctơ mạnh phụ thuộc tham số. Sau đó, chúng tôi thiết lập các điều kiện đủ cho tính chất ổn định nghiệm như tính nửa liên tục trên, tính nửa liên tục trên Hausdorff, tính đóng, tính nửa liên tục dưới, tính nửa liên tục dưới Hausdorff và tính liên tục Hausdorff cho ánh xạ nghiệm của bài toán này. Trong phần ứng dụng, chúng tôi cũn...... hiện toàn bộ
#Bài toán tựa cân bằng #bài toán tựa bất đẳng thức biến phân #tính nửa liên tục trên Hausdorff #tính đóng #tính nửa liên tục dưới Hausdorff #tính liên tục Hausdorff
Tổng số: 234   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10