Scholar Hub/Chủ đề/#bất đẳng thức/
Bất đẳng thức là một quan hệ so sánh giữa hai giá trị hoặc biểu thức không bằng nhau. Nó cho biết một giá trị lớn hơn, nhỏ hơn hoặc không bằng với giá trị hoặc ...
Bất đẳng thức là một quan hệ so sánh giữa hai giá trị hoặc biểu thức không bằng nhau. Nó cho biết một giá trị lớn hơn, nhỏ hơn hoặc không bằng với giá trị hoặc biểu thức khác. Bất đẳng thức thường được ký hiệu bằng các ký hiệu như "<" (nhỏ hơn), ">" (lớn hơn), "≤" (nhỏ hơn hoặc bằng), "≥" (lớn hơn hoặc bằng). Ví dụ: 3 < 5, x ≤ 10, a + b > c - d.
Bất đẳng thức định nghĩa một mối quan hệ so sánh giữa hai giá trị hoặc biểu thức không bằng nhau. Nó cho phép chúng ta xác định mối quan hệ về lớn hơn, nhỏ hơn hoặc bằng với các giá trị hoặc biểu thức khác nhau.
Có hai loại chính của bất đẳng thức là bất đẳng thức đơn và bất đẳng thức đa biến.
1. Bất đẳng thức đơn: Đây là một loại bất đẳng thức mà chỉ có một biến duy nhất. Ví dụ: x > 3, y ≤ 10, z ≠ 5. Trong các bất đẳng thức đơn, giá trị của biến được so sánh với một hằng số cụ thể hoặc một biểu thức khác.
2. Bất đẳng thức đa biến: Đây là một loại bất đẳng thức có nhiều hơn một biến. Ví dụ: 2x + 3y > 10, x^2 + y^2 ≤ 25, a + b + c ≥ 0. Trong các bất đẳng thức đa biến, chúng ta cần xác định không chỉ mối quan hệ giữa các biến riêng lẻ, mà còn mối quan hệ giữa các biểu thức chứa các biến này.
Để giải các bất đẳng thức, chúng ta thường thực hiện các phép tính và các quy tắc tương tự như trong các phương trình. Tuy nhiên, có một số quy tắc cần lưu ý khi làm việc với các bất đẳng thức, bao gồm:
- Khi nhân hoặc chia một bất đẳng thức cho một số âm, hướng của dấu thay đổi. Ví dụ: nếu -2x > 5, khi nhân cả hai vế với -1, chúng ta phải đảo ngược dấu và kết quả là 2x < -5.
- Khi cộng hoặc trừ một bất đẳng thức với một số âm, hướng của dấu giữ nguyên. Ví dụ: nếu 2x > 5, khi trừ cả hai vế cho -3, chúng ta vẫn có 2x > 5.
- Khi nhân hoặc chia cả hai vế của một bất đẳng thức với cùng một số dương, hướng của dấu giữ nguyên. Ví dụ: nếu x > 3, khi nhân cả hai vế cho 2, chúng ta vẫn có x > 6.
Tuy nhiên, khi nhân hoặc chia cả hai vế của một bất đẳng thức với cùng một số âm, chúng ta cần đảo ngược hướng của dấu. Ví dụ: nếu x < 4, khi nhân cả hai vế cho -2, chúng ta cần đảo ngược dấu và kết quả là -2x > 8.
Các quy tắc và kỹ thuật giải các bất đẳng thức đa dạng và phức tạp thường được học trong khóa học toán học và được áp dụng trong nhiều lĩnh vực như kinh tế, khoa học và kỹ thuật.
Sai số bình phương trung bình (RMSE) hay sai số tuyệt đối trung bình (MAE)? - Lập luận chống lại việc tránh sử dụng RMSE trong tài liệu Dịch bởi AI Geoscientific Model Development - Tập 7 Số 3 - Trang 1247-1250
Tóm tắt. Cả sai số bình phương trung bình (RMSE) và sai số tuyệt đối trung bình (MAE) đều thường được sử dụng trong các nghiên cứu đánh giá mô hình. Willmott và Matsuura (2005) đã đề xuất rằng RMSE không phải là một chỉ số tốt về hiệu suất trung bình của mô hình và có thể là một chỉ báo gây hiểu lầm về sai số trung bình, do đó MAE sẽ là một chỉ số tốt hơn cho mục đích đó. Mặc dù một số lo ...... hiện toàn bộ #Sai số bình phương trung bình #sai số tuyệt đối trung bình #đánh giá mô hình #phân phối Gaussian #thống kê dựa trên tổng bình phương #bất đẳng thức tam giác #hiệu suất mô hình.
Về Một Số Bất Đẳng Thức Tích Phân Mới Cho Hàm Số Trong Một Và Hai Biến Dịch bởi AI Springer Science and Business Media LLC - Tập 21 - Trang 423-434 - 2005
Trong bài báo này, chúng tôi xem xét một giới hạn cho phiên bản tổng quát của các bất đẳng thức tích phân cho các hàm số, đồng thời nghiên cứu hành vi chất lượng của các nghiệm của một số lớp phương trình vi phân muộn hyperbol dưới các bất đẳng thức tích phân.
#bất đẳng thức tích phân #phương trình vi phân #nghiệm #hàm số #vi phân muộn
ỨNG DỤNG PHƯƠNG TRÌNH TIẾP TUYẾN ĐỂ SÁNG TẠO VÀ CHỨNG MINH MỘT SỐ BÀI TOÁN VỀ BẤT ĐẲNG THỨCTrong Chương trình toán bậc phổ thông, các bài toán về bất đẳng thức là các dạng toán khó nhưng khá phổ biến và thường gặp trong các kì thi Trung học phổ thông, tuyển sinh đại học, thi học sinh giỏi toán quốc gia, Olympic toán khu vực và quốc tế. Có nhiều phương pháp khác nhau để giải các bài toán này, trong đó phương pháp sử dụng tuyến tiếp tỏ ra hiệu quả và thường được sử dụng trong nhiều trường...... hiện toàn bộ #convex (concave) graph; tangent; inequality; solve inequalities; inequality creation; tangential methods.
Dạng lũy thừa thực của một số bất đẳng thức kiểu YoungTrong bài báo này, chúng tôi mở rộng các kết quả về bất đẳng thức kiểu Young được đưa ra bởi Daeshik Choi (Math. Inequal. Appl. 21 (2018), no. 1, 99–106.) tới lũy thừa thực. Chúng tôi cũng đưa ra một số ứng dụng của các kết quả này vào lí thuyết ma trận.
#Bất đẳng thức Young #Định thức #Ma trận xác định dương #Young inequality #Determinant #positive definite matrix
THÊM ĐIỀU KIỆN ĐỂ XẢY RA ĐẲNG THỨC NĂNG LƯỢNG CHO PHƯƠNG TRÌNH NAVIER-STOKESTNU Journal of Science and Technology - Tập 173 Số 13 - Trang 189-192 - 2017
Có nhiều nhà khoa học trong và ngoài nước quan tâm và nghiên cứu vấn đề này. Chúng ta biết rằng đẳng thức năng lượng sẽ xảy ra dối với nghiệm mạnh của phương trình Navier-Stockes....
#phương trình Navier-Stockes #nghiệm yếu #đẳng thức năng lượng #bất đẳng thức năng lượng #chỉ số Serin
Định lí kiểu trội cho hàm h − lồi mạnh và một số áp dụngBài báo này của chúng tôi chỉ ra định lí trội nổi tiếng của Hardy-Littlewood-Pólya vẫn còn đúng cho lớp hàm h - lồi mạnh. Áp dụng của kết quả này, chúng tôi mở rộng một số bất đẳng thức nổi tiếng cho các hàm lồi suy rộng thuộc lớp hàm h - lồi mạnh.
#Bộ trội #định lí trội #hàm h- lồi mạnh #bất đẳng thức Karamata #Majorization #majorization theorem #strongly h- convex function #Karamata's inequality
Tính ổn định của ánh xạ nghiệm cho bài toán tựa cân bằng véctơ mạnh phụ thuộc tham số và ứng dụngTrong bài báo này, đầu tiên chúng tôi nhắc lại bài toán tựa cân bằng véctơ mạnh phụ thuộc tham số. Sau đó, chúng tôi thiết lập các điều kiện đủ cho tính chất ổn định nghiệm như tính nửa liên tục trên, tính nửa liên tục trên Hausdorff, tính đóng, tính nửa liên tục dưới, tính nửa liên tục dưới Hausdorff và tính liên tục Hausdorff cho ánh xạ nghiệm của bài toán này. Trong phần ứng dụng, chúng tôi cũn...... hiện toàn bộ #Bài toán tựa cân bằng #bài toán tựa bất đẳng thức biến phân #tính nửa liên tục trên Hausdorff #tính đóng #tính nửa liên tục dưới Hausdorff #tính liên tục Hausdorff